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How to dock billions of molecules to
find drug candidates?



How to dock billions of molecules to
find drug candidates?

How to do it hundreds of times?



Why we built this database

* In February at the beginning of the pandemic Argonne launched an effort to
adapt our Cancer drug screening pipelines for COVID-19

* We had the idea that we wanted to expand the reach of virtual screening to
essentially all the publicly available compound datasets

* A conventional virtual screening approach was not going to be scalable to
the 100 or so receptor models we had created for COVID-19 drug targets

* Hybrid Al/HPC approach was needed to give us the throughput to virtually
dock 400-800 Billion compounds (4B x 100 receptors x FRED/AutoDock)

 Basic Plan of Attack: Bootstrap with docking ~1-10M compounds per
receptor, train DNN models with those results, infer on the large-scale data
base, capture high scoring hits, redock those top hits, proceed to the rest of
the pipeline (MD, QM, FE, exp screens, SAR, etc. etc.)



Which features to generate for ML?

* Descriptors, Fingerprints, Graphs, Images?, voxels?, text?, Strings?, Etc.

* We had been comparing descriptors, fingerprints and graphs over the
last few years for our drug response work in Cancer and AMR

* Images had been explored over the last year in our group for Cancer

* Images were looking interesting since you can bring power of CNNs and
many tools from computer vision

* We settled on SMILES, Descriptors, Fingerprints and 2D Images as the
base datatypes which can also easily support graphs on the fly
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Model C - Model B

Images versus X |w,
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Images appear to do better overall in
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HPC-computed features for Al-based drug screening

23 input datasets, 4.2B molecules, 60 TB of molecular

features and representations B N al
Canonical SMILES

Data processing pipeline used ~2M core hours on ALCF D OfwY 23 CSV files with 4.2B molecules

Theta, TACC Frontera, OLCF Summit

Mordred Descriptors
420,130 CSV files, 48.70TB

1. Convert each molecule to a canonical SMILES
2. For each molecule, compute:

a. ~1800 2D and 3D molecular descriptors using | @
Mordred @ &+ Molecular Fingerprints
b. Molecular fingerprints encoding structure 4,221 CSV files with base64

c. 2D images of the molecular structure [EEFEEERRE - encoded fingerprints, 578.27GB

Computed data provide crucial input features to Al models
for predicting molecular properties such as docking scores

e S aty 2D images
and toxicity

420,707 Pickle GZ files, 11.48 TB

)C=C4C(=0)0
-

https://2019-ncovgroup.github.io/data/



Source datasets

Collect and process a broad set of molecular datasets
from >20 distributed locations
Chemical Databases

Enamine

@RUGBANK
e
s GDB
eMolecules’

cureFFI MOSES
ZINC15

C, SureChEMBL

Pub(Chem

And more...

Key

BDB

CAS

DBK

DCL

DUD

E15

EDB

EMO

ENA

FFI

G13

G17

HOP

LIT

MCU

MOS

PCH

QM9

REP

SAV

SUR

ZIN

Total

Canonical SMILES
1file; 132 MB
1file; 4 MB
1file; 650 KB
1file; 260 KB
1file; 7 MB
1file; 1 GB
1file; 18 MB
1file; 1 GB
1file; 85 GB
1file; 117 KB
1file; 36 GB
1file; 2 GB
1file; 37 KB
link
link
1file; 93 MB
1file; 6 GB
1file; 3 MB
1file; 623 KB
1file; 28 GB
1file; 1GB
1 file; 85 GB

21 files; 248 GB

Fingerprints
2 files; 302 MB
1 file; 9 MB
2 files; 2 MB
1 file; 576 KB
2 files; 32 MB
16 files; 2 GB
1file; 44 MB
26 files; 3 GB
1,212 files; 191 GB
1file; 239 KB
978 files; 101 GB
51 files; 5 GB
1file; 68 KB
link
link
2 files; 250 MB
98 files; 14 GB
1 file; 10 MB
1file; 1 MB
266 files; 55 GB
18 files; 2 GB
1,226 files; 193 GB

3,907 files; 571 GB

Descriptors
link
5 files; 350 MB
1file; 71 MB
1file; 29 MB
10 files; 745 MB
1,555 files; 116 GB
28 files; 2 GB
2,232 files; 165 GB
120,692 files; 8 TB
1 file; 11 MB
97,739 files; 7 TB
5,000 files; 371 GB
1file; 2 MB
link
link
194 files; 14 GB
9,755 files; 725 GB
14 files; 993 MB
1 file; 46 MB
28,323 files; 2 TB
1,792 files; 132 GB
147,132 files; 10 TB

414 K files; 30 TB

Images
link
5 files; 2 GB
1file; 476 MB
1 file; 196 MB
10 files; 4 GB
1,555 files; 765 GB
32 files; 15 GB
2,595 files; 1TB
link
1file; 73 MB
link
5,000 files; 2 TB
1file; 177 MB
link
link
123 files; 60 GB
9,754 files; 4 TB
14 files; 6 GB
1file; 307 MB
26,282 files; 12 TB
link
link

412K files; 49 TB



The Databases were captured
In March/April 2020

If sufficient external demand, we will
update the collections early next year

We strongly encourage anyone using this
data base to dereference through
the source databases

We have since added Mcule ULTIMATE
and are in the process of updating for
ZINC20

Source database quality varies
considerably ©

We included some non-drug like sources
for QC

We have drug like filters on our pipelines
using a variety of tools PAINS etc.

Key
BDB

CAS
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DBK

DCL
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E15
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EMO
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FFI

G13

G17

HOP
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MCU

PCH

QM9

REP

SAV

SUR

ZIN

Total

Description and link
The Binding Database
CAS COVID-19 Antiviral Candidate Compounds

CheMBL db of bioactive mols with drug-like
properties

Drugbank

DrugCentral Online Drug Compendium

DUDE database of useful decoys
15.5M-molecule subset of ENA

DrugBank plus Enamine Hit Locator Library 2018
eMolecules

Enamine REAL Database

CureFFI FDA-approved drugs and CNS drugs
GDB-13 small organic molecules up to 13 atoms
GDB-17-Set up to 17 atom extension of GDB-13

Harvard Organic Photovoltaic Dataset

COVID-relevant small mols extracted from literature

Molecular Sets (MOSES)

MCULE compound database

PubChem

QM9 subset of GDB-17

Repurposing-related drug/tool compounds
Synthetically Accessible Virtual Inventory (SAVI)
SureChEMBL dataset of molecules from patents

ZINC15

# Molecules
1,813,538

49,437

1,940,732

10,095
3,981

99,782
15,547,091
310,782
25,946,988
1,211,723,723
1,497
977,468,301
50,000,000
350

803
1,936,962
45,472,755
97,545,266
133,885
13,553
283,194,309
17,915,384
1,475,804,828

4,206,934,042

% Uniq
20.4

55.5

76.1
24
99.7
99.7
61.2
93.9
85.9
12.2
99.5
100.0

83.7

813

48.5
84.0
0.0
99.8
9.8

85.1



Step 1: Convert to canonical SMILES

Simplified molecular-input line-entry system (SMILES) is a specification in
the form of a line notation for describing the structure of chemical species
using short ASCII strings.

Unfortunately, SMILES may be represented differently for the same
molecule and are not optimized for matching.

BrC1=C2C3=C4C(C=C5C=NC(S3)=C45)=C2SC=C1

Brc1ccsc2c1c1sc3cd4c1c2ccden3

G

During this step we also computing InchiKeys and internal IDs
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Step 2: Compute molecular deSCFiptOrS Mordred Descriptors vs Dragon7 vs others

e For machine learning inference we want to identify features of molecules that define structure,
properties, etc.

e Molecular descriptors: “final result of a logical and mathematical procedure, which transforms
chemical information encoded within a symbolic representation of a molecule into a useful number
or the result of some standardized experiment”

e Thousands of molecular descriptors have been developed,

o  E.g., the number of carbon atoms; molecular weight; predictive values of LogP; properties calculated from 2D structures
(e.g., Eccentric Connectivity Index) and 3D structures (e.g., charged partial surface area); and properties based on
guantum mechanics

Load a Dataset from CSV Display a TSNE Embedding of the Space
datakfiTel=lEFTodec oo Ve X = [descriptors for smiles, (name, descriptors) in data.items()]
data = pd.read_csv(data_file) X_embedded = TSNE(n_components=2).fit_transform(df_desc.values)
headers = pd.read_csv('descriptor_headers.csv')
headers = [h.strip() for h in list(headers.columns)] plt.scatter(X_embedded[:,0],
headers = ['dataset', 'name','smiles'] + headers X_embedded[:,1],
alpha=0.2,

data.columns = headers . $=25)
data.head() sns.despine()

dataset name smiles ABC ABCGG nAcid nBase SpAbs_A Sph l"\'
0 FFI Abiraterone CC(=0)O[C@H]1CC[C@]2(C(=CCC3C2CC[C@]2(C3CC=C2c... 23.503382 17.343279 0.0 0.0 38.038227 26 50 . '”N
1 FFI Acamprosate CC(=0O)NCCCS(=0)(=0)0 7.766604 7.585127 1.0 0.0 11571944 2.1: 25 T LR

- & "
2 FFI Acarbose octcernolcericiceeHziceerl@IOTCe) 33700264 26700638 00 10 55600055 2.4¢ K ‘ -
0- T F
3 FFI Acebutolol CCCC(=0)Nclcce(c(c1)C(=0)C)OCC(CNC(C)C)O 17546020 14.908962 0.0 1.0 28601421 2.3t ‘ Bt > % 3‘:{' ¥
8 T e ® e "o
4 FFI  Acenocoumarol CC(=0)CC(c1c(=0)oc2c(c10)ccec2)clcee(cct)[N+](... 20.172247 16.404648 0.0 0.0 32642193 2.4¢ —-25 - - 4:‘»0 fg - " . # 2 vﬁ'
AD "
-
5 rows x 1829 columns —-50 - p
T T T T T
-60 -40 =20 0 20 40




Step 3. Compute fingerprints for similarity search

e Having identified potential candidate molecules it is desirable to also explore similar molecules
e Not easy to compare billions of SMILES.. need more efficient representation

e Molecular fingerprints encode the structure of a molecule.
o  The most commonly as a series of binary digits (bits) that represent the presence or absence of particular substructures
in the molecule.
o  Can then compute distance between these fingerprints
e Two programs
1. create fingerprints for all SMILES
2. search for most similar fingerprints for a set of SMILES

import pandas as pd
data_file = 'FFI-0-1000000.csv'

df = pd.read_csv(data_file,
names=["dataset","name","smiles"," fingerprint"])

df.head()

dataset name smiles fingerprint
0 FFI Abacavir NC1=NC2=C(N=CN2[C@@H]2C[C@H](CO)C=C2)C(NC2CC2)=N1 4P/[/wAIAAAUAAAAENhyXol2TOg8fNAOSGBI7AcEphhKFI...
1 FFI  Abiraterone CC(=0)O[C@H]1CC[C@]2(C)C3CC[C@@]4(C)C(CC=CA4C4-=... 4P///WAIAAA2AAAADhDMUIgGWDIESjZOhBwCDoguNIhQjF...
2 FFI Acamprosate CC(=O)NCCCS(0)(=0)=0 4P///wAIAAAWAAAAOOhe0AKA3HIgfpZ5AGROTmMYy2gQCMDAQ...
3 FFI Acarbose C[C@H]10[C@H](O[C@@H]2[C@@H](CO)O[C@H](O[C@@H]... 4P///wAIAAAYAAAAIBaaCiwULpDgLnAGCEJaTAWUEKGg6Ig...
4 FFI Acebutolol CCCC(=0)NC1=CC(C(C)=0)=C(OCC(O)CNC(C)C)C=C1 4P///wAIAAAVAAAAAKSMGiISKkHAXGbhQJADSKOIYOSKWWGE...



Step 4. Generate Molecular Image Files 128 x 128 pixels (color)

Load a Dataset from Pickle
Images were created for each molecule to

simplify application of deep learning methods

data_file = 'FFI-img.pkl'
df = pd.DataFrame(pd.read_pickle(data_file),
columns=['dataset', 'name', 'SMILES','image'])

Predicition value 0.9508237838745117

Predicition value 0.9441864490509033

Predicition value 0.9838930368423462 Predicition value 0.9879051446914673

10

df.head()
dataset name SMILES image
0 - Abacavir NC1=NC2=C(N=CN2[C@@H]2C[C@H] <PIL.PnglmagePlugin.PngimageFile
Attention Maps on Images in Drug Response (core=caemezeean mage mode=RG..
1 FFl  Abiraterone CC(=0)O[C@H]1CCI[C@]2(C)C3CCIC@@]4(C)C(CC=CACA=. . Al

image mode=RG...

<PIL.PngimagePlugin.PnglmageFile

2 FFI Acamprosate CC(=0)NCCCS(0)(=0)=0 image mode=RG...
0.9

3 FFI Acarbose C[C@H]N0[C@H](O[C@@H]2[C@@H](CO)O[C@H] <PIL.PngimagePlugin.PngimageFile
0.8 (O[C@@H]... image mode=RG...

a FFl  Acebutolol CCCC(=0)NC1=CC(C(C)=0)=C(OCC(0)CNC(C)C)C=C1 <PIL.PngimagePlugin.PngimageFile

r0.7

r 0.6

r0.5

- 0.4

1.05

Visualize Some Molecules

n_mols, offset = (5, 100)

image mode=RG...

fig, axs = plt.subplots(1l, n_mols, figsize=(10,4), constrained_layout=True)

0.90

0.15

for i, (index, mols) in enumerate(df[offset:offset+n_mols].iterrows()):
axs[i].set_title(mols[1])
axs[i].imshow(mols[3])
sns.despine()

Arbekacin Arbutamine

Aprobarbital Ardeparin

125

Arformoterol

T T - T T T T
0 100 0 0 100 0 50



Accessing the Data Via Globus

D

D
D)

0
0
[
U
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Collection

select none

Path /vl/descriptors/E15/

* O

NAME

E15-0-10000.csv

E15-10000-20000.csv

E15-100000-110000.csv

E15-1000000-1010000.csv

E15-10000000-10010000.csv

E15-10010000-10020000.csv

E15-10020000-10030000.csv

E15-10030000-10040000.csv

E15-10040000-10050000.csv

The nCov-Group Data Repository

LAST MODIFIED

05/19/2020 02....

05/19/2020 02....

05/19/2020 02....

05/19/2020 02....

05/19/2020 02....

05/19/2020 02....

05/19/2020 02....

05/19/2020 02....

05/19/2020 02....

SIZE

128 MB

128.39 MB

128.85 MB

128.86 MB

128.86 MB

128.64 MB

128.65 MB

128.78 MB

128.96 MB

X

v

https://2019-ncovgroup.github.io/data/

UChicago RCC Midway

/~InCov-analysis/data/

OO

NAME v

E15-0-10000.csv

E15-10000-20000.csv

E15-100000-110000.csv

Transfer & Sync Options

LAST MODIFIED

05/21/2020 0...

05/21/2020 0...

05/21/2020 0...

Panels [] [OOJ

Q ®

SIZE

128 MB
128.39 MB

128.85 MB



ECP CANDLE Team Prepared 60TB of data for
4.2B molecules for SARS-CoV-2 Research

arXiv:2006.02431 (g-bio)

[Submitted on 28 May 2020]

Targeting SARS-CoV-2 with Al- and HPC-enabled Lead Generation: A First Data
Release

Yadu Babuji, Ben Blaiszik, Tom Brettin, Kyle Chard, Ryan Chard, Austin Clyde, lan Foster, Zhi Hong, Shantenu Jha, Zhuozhao Li,
Xuefeng Liu, Arvind Ramanathan, Yi Ren, Nicholaus Saint, Marcus Schwarting, Rick Stevens, Hubertus van Dam, Rick Wagner

Researchers across the globe are seeking to rapidly repurpose existing drugs or discover new drugs to counter the the novel coronavirus
disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One promising approach is to train machine
learning (ML) and artificial intelligence (Al) tools to screen large numbers of small molecules. As a contribution to that effort, we are
aggregating numerous small molecules from a variety of sources, using high-performance computing (HPC) to computer diverse properties
of those molecules, using the computed properties to train ML/AlI models, and then using the resulting models for screening. In this first data
release, we make available 23 datasets collected from community sources representing over 4.2 B molecules enriched with pre-computed: 1)
molecular fingerprints to aid similarity searches, 2) 2D images of molecules to enable exploration and application of image-based deep
learning methods, and 3) 2D and 3D molecular descriptors to speed development of machine learning models. This data release
encompasses structural information on the 4.2 B molecules and 60 TB of pre-computed data. Future releases will expand the data to include
more detailed molecular simulations, computed models, and other products.



How are we accessing the data?

* We have the data in several forms

e SQL database with various keys
* Pickle files for Python loading (tfrecords, etc.)
e CSVs for general computing

* We have built a few “quick and dirty” query tools
* Fingerprint searching
* Neural Fingerprint searching
* Image similarity searching

e We tend to use subsets with tools like FastROCS on our GPU clusters
for structural/shape/color searches



Scalable AlI-HPC Infrastructure for Drug Screening

Multi-stage campaign employed to select
promising drug candidates:

. Stage-1: High-throughput ensemble
docking to identify small molecules
(“hits”)

- Stage-2: Al-driven Molecular Dynamics for
modeling specific binding regions and
understanding mechanistic changes
involving drugs

- Stage-3: Binding Free Energy calculations
of promising leads (“Hit-to-Lead”)

High Throughput
Docking (S1)

Coarse Grained
Binding Affinity
(S3-CG)

—»

|

ML-predict Docking
Scores (ML1)

A

Stability
Measures/Features for
Protein-Ligand
Interactions

Offline Ensemble
Docking

Latent Space Representation
and

Steered Advanced Sampling
(52)

Enhanced Sampling of
protein target states

'

Fine-Grained
Binding Affinity
(S3-FG)

l

Improved Binding
Free-Energy Estimates




Scalable AlI-HPC Infrastructure for COVID-19

Stage-0 (Offline) Building Surrogate

o ~O(108) docking hits to generate
enough diversity data to use to train &
create a surrogate model (ML1)

e« ML1 Surrogate: A “resnet-50" deep
neural network

e Transforms image representations of
ligand molecules into a docking score

https://arxiv.org/abs/2010.06574

High Throughput
Docking (S1)

Coarse Grained
Binding Affinity
(S3-CG)

—»
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ML-predict Docking
Scores (ML1)
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Stability
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Protein-Ligand
Interactions

Latent Space Representation
and

Steered Advanced Sampling
(52)

Enhanced Sampling of
protein target states

'

Fine-Grained
Binding Affinity
(S3-FG)

Improved Binding
Free-Energy Estimates

S1 = ML1 (50,000x performance improvement on single x86)



Impacting SARS-CoV-2 Medical Therapeutics

top y% of ranked computed scores

10°

RES plot for PLPro Docking Surrogate Model

1073

1072

107!

top x% of ranked predicted scores

Regression Analysis Surface (RES): https://arxiv.org/pdf/2006.01171.pdf
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Table 3: Throughput and performance measured as peak flop
per second (mixed precision, measured over short but time in-

terval) per Summit node (6 NVIDIA V100 GPU).

Comp. | #GPUs Tflop/s Throughput
ML1 1536  753.9 319674 ligands/s
S1 6000 112.5 14252 ligands/s
S3-CG 6000 2779 2000 ligand/s
S3-FG 6000 7324 200 ligand/s




MSE

Error analysis for ML inferencing (ML1)

MSE across all F receptors for different sampling
techniques (random vs flatten)

Mean Square Error across all F Receptors

30 ] ] | ] | ] 1 ] ] ] ] ] ]

T T T T
Random MSE ()
Flatten MSE 3

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 9 -8 -7 6 -5 -4 -3 -2
Docking Bin

MSE

30

MSE across all F receptors for different
activations (Elu vs Relu)

Mean Square Error across all F Receptors

1 ] 1 I ] I ] ] ] ] ] ] 1 ] 1 ]

ELU
RELU

1 1 1 1 1 1 1 1 1 1 1

)
+

-19

-18 -17 -16 -15 -14 -13 -12 -11 -10 9 -8 -7 -6 -5 -4 -3

Docking Score Bin




Mean Square Error

16

14

-18

Sample Weighting and Model HPO

Effect Weights and Model Architecture on Mean Square Error

| I I 1 | I | I I 1

I I ] ) 1
no weights, default model
no weights, optimized model
weights, default model
weights, optimized model

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-17 -16 -15 -14 -13 -12 -1 -10 9 -8 -7 -6 -5 -4 -3

Docking Score Bins

Mean Absolute Error

Effects of Weighting and Model Architecture on Mean Absolute Error

| I 1 1 ) | ) ) I |

nol weig'hts. dlefaultI modlel

weights, default model
weights, optimized model

1 1 1

no weights, optimized model %

-17 -16 -15 -14 -11 -10 -9 -8

Docking Score Bins

model architectures and sample weighting vs no sample weighting
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Table 3: Throughput and performance measured as peak flop

RMSD (&)
per second (mixed precision, measured over short but time in-
terval) per Summit node (6 NVIDIA V100 GPU).

Comp. | #GPUs Tflop/s Throughput

ML1 1536  753.9 319674 ligands/s

S1 6000 112.5 14252 ligands/s

S3-CG 6000 2779 2000 ligand/s

S3-FG 6000 7324 200 ligand/s

IMPECCABLE: Integrated Modeling PipelinE for COVID Cure by Assessing Better LEads
https://arxiv.org/abs/2010.06574



Impacting SARS-CoV-2 Medical Therapeutics

o Scale of Operation:
o ~107% docking calculations using OpenEye and Autodock in ratio 10:1
o ~1072docking surrogate (ML inference) docking scores (3.6 hours per 4.2B)
o Thousands of ML-driven MD calculations over multiple platforms (Summit, Lassen, ...)
o 5 x 10 Binding Free Energy Calculations across machines
o 2.5 x 109 node-hours (equal to ~25 days of 100% of Summit)
= Assuming 5-year lifetime of Summit at $500M [ $6M cost of computing!

e For S1, we estimate 1.25 x 10° node hours (lower bound)
o Peak Performance: ~4000 nodes for docking studies on Frontera (06 Sep 2020),

o Robust and Extensible Computational Infrastructure and Capabilities
o Campaign operation over multiple heterogeneous resources
o Extending computational infrastructure to covalent inhibitors of cysteine proteases



Current Status

 The DOE nine lab NVBL group has
completed our first rounds of virtual
screening

* We experimentally screened 1200
compounds on 10 COVID-19 drug
targets

* We have 63 hits that are in
downstream experimental pipelines

* 600 additional molecules are entering
antiviral assays to bracket the initial
hits

* The Compound database is now
being used to support a variety of
projects in Cancer and Machine
Learning
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