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Giga-Search 

Fast Chemical Substructure Search
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“Traditional” approach to substructure 
searching

• Pre-calculated column with fingerprints in the 
database
– Each bit in the fingerprint corresponds to some 

sub-fragment in the molecule.
– Search goes first through this column and checks if 

pattern fingerprint is subset of fingerprint from the 
database

– For matched rows search performs actual 
substructure search

• Works reasonably fast on DB size < 10M
– Most searches complete in in seconds

• Same fingerprint column can be used for 
similarity search (Tanimoto distance)

• Implemented in Molcart as chemical cartridge
– Set of chemical functions to be used within SQL 

query: http://molsoft.com/molcart.html 

http://molsoft.com/molcart.html
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New approach for searching in large space

• “Traditional  search” on such size may take minutes to 
hours to get the result

– The bottleneck is the amount of data (fingerprints) to 
scan through (~200G for 1B compounds, for 1536 bits 
FP)

• The new approach is to:

– Dynamically find optimal subset of bits for an input 
chemical pattern/query

– Design new fingerprint storage to efficiently read only 
subset of bits
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Finding significant bits of a fingerprint

• Significant bits can be found using pre calculated 
fingerprint statistics for a certain database

• This information can be further used to more efficiently 
filter the database without scanning the whole table of 
fingerprints 

• We did some experiments and found that for average 
chemical substructure set of ~10 significant bits is 
enough to significantly reduce chemical search space

− That means that we reading less than 1% of FP data.

Significant 
Bits 

Dynamic set of bits 
selection
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Giga-Search method workflow
1. Pre-filtering

– Find optimal bits subset for a given pattern
– Reduce chemical space (list of row IDs)
– This stage takes around 2 sec for 1B DB size for any 

pattern
– Reduced space is usually less than 0.5% of the total DB

2. Apply “traditional” search for reduced chemical space to 
find actual hits

Significant 
bits

Reduced 
chemical 

space

Molcart 
Search after 

filtering
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Databases used in Giga-search benchmark

• Enamine REAL 2020 
– Size: 1.3B of structures
– Synthesis success rate normally attains 85% and higher
– More info from Enamine website

• https://enamine.net/library-synthesis/real-compounds/real-database

• Synthetically Accessible Virtual Inventory: SAVI-2020 
– “Plus Class” only, size 1.1B (62.61% of total SAVI products)
– Proposed products with reactions generated in the first full 

enumeration of the SAVI project
• Patel, H., Ihlenfeldt, W. D., Judson, P. N., Moroz, Y., Pevzner, Y., 

Peach, M., Tarasova, N., & Nicklaus, M. (2020). Synthetically 
Accessible Virtual Inventory (SAVI) (Version 2020). CADD Group, CBL, 
CCR, NCI, NIH

• https://cactus.nci.nih.gov/download/savi_download/

https://enamine.net/library-synthesis/real-compounds/real-database
https://cactus.nci.nih.gov/download/savi_download/
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Substructure REAL (1.3B)
# hits after pre-filtering

# of actual hits

SAVI (1.1B)
# hits after pre-filtering

# of actual hits

Time to get first 
1000 hits

c1cnc(cn1)C(N)=O

5,934,684 (0.4%)
5,317,178

2,105,092 (0.19%)
1,429,140

3.9 sec

C1C(C(NO1)=O)N

664,654 (0.05%)
61,841

94,569 (0.008%)
93,052

3.78 sec

c1ccc2c(c1)nco2

3,976,593 (0.3%)
3,847,767
 

5,867,937 (0.5%)
5,648,155

4.21 sec

CN1C=CNC1=S

40,516 (0.002%)
40,004

42,543 (0.003%)
41,592

3.66 sec

C1C(C1N)c1ccccc1

2,752,329 (0.2%)
2,308,662

2,416,947 (0.2%)
1,979,782

3.94 sec
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Giga-Search Implementation
• Online service (ICM 

script) to provide 
substructure search
– GUI interface from 

ICM-Pro or 
ICM-Chemist

• For Molcart customers 
the service can be 
hosted locally on 
custom database

Giga 
Search
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Giga-Search: Hardware Requirements

• Any modern CPU: i7, i9, Xeon
• RAM: >16Gb
• Storage: Fast SCSI HDD or SSD (preferred)
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Rapid Isostere Discovery Engine (RIDE)

Fast Ligand Based Screening of Large Databases
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Atomic Property Fields (APF)

1. Hydrogen bond 
donors

2. Hydrogen bond 
acceptors

3. Sp2 hybridized 4. Lipophilic 5. Bulk (large)

6. Charge: 
positive/negative

7. Electropositive/negative

Ciprofloxacin

Totrov M. Chem Biol Drug Des. 2008 Jan;71(1):15-27 (https://www.molsoft.com/apf.html)

• APF is a 3D pharmacophoric potential implemented on a continuously 
distributed grid which can be used for ligand docking and scoring
○ A single ligand atom can contribute to multiple fields
○ Multiple similar ligand atoms in a spatially consistent location result in a 

strong pharmacophore signal for their features in this location
• APF covariance/score can be considered as a 3D similarity and alignment 

quality measure



NIH Virtual Workshop: Ultra Large Chemistry Databases

APF applications

• Chemical superposition
• Ligand guided Virtual Screening
• Multiple chemical alignment
• Scaffold Hopping
• APF-ARM (activity regression model)
• Chemical clustering by pose
• Ligand binding site superposition and comparison
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DUDe benchmark

• 102 target proteins
• 22,886 active compounds

– an average of 224 ligands per 
target

• 50 decoys for each active 
– similar physico-chemical 

properties 
– dissimilar 2-D topology

• 1 ligand from X-ray per target as a 
query for ligand-based screening 

Mysinger MM, Carchia M, Irwin JJ, Shoichet BK J. Med. Chem., 2012, Jul 5

A Database of Useful Decoys: Enhanced
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Accuracy of Flexible Ligand 
Superposition

ADA       CDK2   DHFR ER FXA    HIVRT      NA P38   THR    TK TRP mean
(39)       (72)     (410) (39) (146)   (43)          (49) (454)   (72)           (22) (49) (1100)

----------------------------------------------------------------------------------------------------------------------------------------

Surflex-sim 2    12.82      12.5      44.39    56.41     4.11         18.6      18.37     9.69             4.17      68.18   40.82 23.15
1    35.9        51.39    53.66    43.59    33.56        72.09    75.51    69.6            93.06       31.82   59.18 59.07
0    51.28     36.11      1.95        0          62.33          9.3          6.12    20.7                2.78         0              0 17.78

ROCS 2    12.82     43.06    74.15   41.03    14.38        30.23     79.59     9.47               2.78        86.36    8.16 35.63
1    20.51     36.11    14.39   56.41    28.77        34.88     14.29    41.19           69.44        9.09      81.63 32.83
0    66.67     20.83    11.46     2.56     56.85        34.88       6.12      49.34           27.78       4.55       10.2 31.54

FlexS 2    15.38     25          56.1         48.72    35.62        16.28     36.73    14.98           30.56      81.82      18.37 33.48
1    20.51     19.44    11.71  43.59     13.7         46.51      57.14    74.01             5.56      13.64       2.04 35.77
0    64.1       55.56     32.2      7.69     50.68       37.21       6.12     11.01            63.89        4.55     79.59 30.75

ICM/APF 2    46.15     12.5      86.83   51.28    70.55        18.6          75.51    20.04           88.89     90.91     69.39 54.48
1    23.08     68.06    11.95   46.15    16.44        46.51        14.29    68.28             9.72        9.09     28.57 36.49
0    30.77     19.44      1.22   2.56       13.01       34.88        10.2       11.67            1.39        0           2.04 9.03

● Independent broad benchmark: ligands without X-ray structures 
but similar chemotype to a solved complex. 

● Assessment of superposition quality: 2-good/1-acceptable/0-poor  
○ 11 targets from DUDe 

● Flexible APF outperforms other methods but it is relatively slow.

Giganti et al. J Chem Inf Model 2010, 50, 992-1004



NIH Virtual Workshop: Ultra Large Chemistry Databases

Fast APF screening: Rapid Isostere 
Discovery Engine (RIDE) 

• Use pre-generated conformers, rigid body APF superposition only 
optimizes translations/rotations

• New systematic search algorithm designed for speed from the 
ground up: 

– high level heuristics  focusing search on the most relevant space

– maximized use of pre-computed lookups 

– most compact data storage

– concurrent evaluation of many poses

• Much faster even on CPU, especially multi-core

• GPU implementation is still orders of magnitude faster

• How the alignment quality is comparable to flexible APF?
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RIDE versus Flexible APF screen on DUDe
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Top 2% Enrichment Factor: Flexible APF 

• EF = fraction of true 
positives in top N% 
divided by fraction of 
actives in the input 
database

• Flexible APF EF2%
– 18.1 mean, 15.8 median

• RIDE EF2%
– 18.5 mean, 16.1 median

• RIDE superposition 
quality is similar to 
slower flexible method
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RIDE implementation: Input
• The method can work with any set of pre-generated 

conformations
• For most efficient processing we designed a special DB 

format based on Sqlite engine
• Space required ~ 200 bytes per conformation

– ~20x time more space efficient than SDF
– 5Gb per 1M chemicals with ~30 conformations per 

molecule

• Provides both efficient sequential and random (by id) 
access

• The database can be either generated by Molsoft 
conformation generator or by converting multiple 
external SD files
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RIDE features
• Fine tuning of the query

– Change per-atom contributions of different portions of the 
molecule

• scaffold hopping, shape match, etc.
– Apply envelope penalty to different portions or to the whole 

molecule
– Provide receptor object to automatically calculate excluded 

volume
– Multiple ligands can be used as a consensus template 

RIDE
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RIDE speed benchmark

Method Speed
 (mol/sec)

Total 
time

Flexible 
APF

0.38 44 days

Rigid APF 0.78 22 days

RIDE (CPU) 229 1.78 
hours

RIDE (GPU) 38729 48 sec

Benchmark Database: 
Screening collection from (1.5M compounds 30M conf.)

1B compounds can be screened in 8-9 hours on a single GPU
Speed and quality of superposition make RIDE a perfect tool 
for ligand based virtual screening of large chemical databases.

CPU: Intel(R) i7 CPU 870 @ 2.93GHz
GPU: GeForce RTX 2080
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RIDE Implementation
• Molsoft provides number of pregenerated conformational 

databases
– Screening collections from Chemridge, Chemdiv and Enamine

– Diverse subset from Enamine REAL (~16M)

– MolPort and eMolecules aggregation DBs (~7.5-6.5M each)
• GUI interface from ICM-Pro or ICM-Chemist

• Docker container with RIDE service and web front-end

RIDE
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RIDE: Hardware Requirements

• Any modern CPU: i7, i9, Xeon with 4 or more cores
• RAM: >16Gb
• Storage: Fast SCSI HDD or SSD (preferred)
• For GPU mode:

– Nvidia GPU with Pascal or higher architecture

– >8Gb RAM

– RIDE doesn’t use double precision, so cheaper models like 
GeForce RTX (around $800) work as well as more expensive  
Quadro and Tesla models 
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