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ABSTRACT: Identifying and purchasing new small molecules to test in On-Demand heatmap 108
biological assays are enabling for ligand discovery, but as purchasable chemical ]!

space continues to grow into the tens of billions based on inexpensive make-on- \
demand compounds, simply searching this space becomes a major challenge. We 09

have therefore developed ZINC20, a new version of ZINC with two major new
features: billions of new molecules and new methods to search them. As a fully
enumerated database, ZINC can be searched precisely using explicit atomic-level
graph-based methods, such as SmallWorld for similarity and Arthor for pattern
and substructure search, as well as 3D methods such as docking. Analysis of the
new make-on-demand compound sets by these and related tools reveals startling
features. For instance, over 97% of the core Bemis—Murcko scaffolds in make- -
on-demand libraries are unavailable from “in-stock” collections. Correspond- 0.0 0z 04 0.6 08 10

ingly, the number of new Bemis—Murcko scaffolds is rising almost as a linear mert

fraction of the elaborated molecules. Thus, an 88-fold increase in the number of

molecules in the make-on-demand versus the in-stock sets is built upon a 16-fold increase in the number of Bemis—Murcko scaffolds.
The make-on-demand library is also more structurally diverse than physical libraries, with a massive increase in disc- and sphere-like
shaped molecules. The new system is freely available at zinc20.docking.org,

0.8+

npr2
Number of molecules

0.6+

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00675
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ZINCTS BACKIN ¢018...

Timed Out

Your query took too long.
We are working on a better solution! For now, Here are some things you may try (after ? in URL)
Ask for fewer (€.g. count=10@8 )

Turn off (possibly default) sorting (e.g9. sort=no )
Turn off (possibly default) duplicate removal (e.g. distinct=no)

Acknowledgements Usage Why are ZING results "estimates™? Terms of use Privacy policy Supported by NIGMS via GM7 1896 Questions, Discussion, Bug
reports, Feature requests Irwin and Shoichet Labs and UC Regents.
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EVOLUTION VS. REVOLUTION

 Approaches to tackle the dramatic growth of
chemical databases fall into two main strategies...

1. Push existing linear scaling technologies, such as
binary fingerprint Tanimoto and SMARTS
substructure search as fast as they’ll go.

2. Develop innovative (significantly) sublinear scaling
chemical search methods.

* Both these strategies take advantage of technical
improvements in computer hardware, particularly
storage technology.



WHAT'S THE ISSUE WITH O(N)¢

* A few years ago, good performance ~4Mmol/s.

— ChEMBL with 2 million compounds in half a second.
— PubChem with 100 million, searched in 25s.
— Enamine REAL/ZINC with 1.4 billion, takes nearly 6 mins.

e Today ~400 million mols per second, but still linear!

Timings of different SMARTS queries

(Arthor running on kryten desktop) shows
showing linear scaling with database size.

Worst case: 4B mols in under 8s.

Tirne (ms)
1753 -y o

5e+08 1e+09 1.5¢+00 2e+09  25e<09  3e+09  35¢+00  4e+09



COMPUTER HARDWARE 2020
-mm

48GB x4=192GB $22400

RAM 2TB $21800 200 9.2
NVME 2TB x3=6TB $1281 32 25
SSD 7.68TB x8=61TB  $10200 3 0.3
HD 18TB x8=144TB $4600 0.3 0.066
Network 0.12

For similarity searching, 1 billion molecules requires 34GB as 256 bit FPs,
68GB as 512 bit FPs, 136GB as 1024 bit FPs and 252GB as 2048 bit FPs.

For substructure searching, 1 billion molecules, Arthor requires 219GB
(~219 bytes per molecule) for optimal performance, or minimally 92GB
(92 bytes per molecule).

GPUs have ~3x bandwidth, but <10% capacity, at ~ same price.
Hard disks have 72x capacity, at 20% the price.



RANDWIDTH IS KING

For non-trivial data sets, that don’t fit in cache,
bandwidth becomes the performance bottleneck.

Modern multi-core architectures assume a high
computation density.

On Intel/AMD chips, the number of memory
channels and speed of the memory is sometimes
more important than the number of cores.

Bandwidth limits the value of cores on CPUs/GPUs.
Bandwidth limits the value of nodes on a cloud.




NOT JUST A GOOD IDEA, IT'S THE LAW

SPEED
LIMIT

299,792,458

* Kryten’s DRAM is rated 2933 MHz, so on each cloc
light travels ~10 centimeters.



BRANDWIDTH IN SMARTS SEARCHING 1

* Profiling reveals that majority of time spend in traditional
state-of-the-art chemical database engines is not actually in
the SMARTS matcher, but in representation conversion.

3% 1%

@ File 1/0
O SMILES Parsing

Ring Perception

O Aromaticty
O SMARTS Matching

* The primary insight of NextMove Software’s Arthor is to us
compact binary representation that is ready to search.

 The same bytes on disk as when processed in memo



BANDWIDTH IN SMARTS SEARCHING ¢

* Another major factor is efficient encoding
(compression) of connection tables in a form that
can be processed.

* Arthor requires 92 bytes on average per molecule.

— The majority of molecules require only 2 bytes per atom
and 2 bytes per bond.




SQC SUBSTRUCTURE BENCHMARKS

im 5m 1h

3341

1000

90%

100

Arthor (8 threads) == 12s
Arthor == 46s

Arthor (Brute force) m= 27m17s

10 16m50s
BioVia Direct === 50m35s

EPAM Bingo NoSQL === 1h2m59s
2h9m1iis

ChemAxon JCART wem 2h44m47s
RDKit Cart we= 5h13m19s
OpenChemLib === 5h53m40s

1 OB FastSearch == 2d11h42m1i4s

Num Queries (n)

\ M

1 1 1 1 1 1
1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07
Time (ms)

https://www.slideshare.net/NextMoveSoftware/substructure-search-faceoff
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ARTHOR MATCHING OPTIMIZATIONS

Efforts focused on addressing “worst case” pathological
behaviour rather then FP prescreens.

Advanced symmetry perception and pruning.
SMARTS (& sketch) query optimization. De
— Intramolecular H Bonds i {\ 0
* Input: O=[C,N]aa[N,O;!H0] . HN@OL
N_ 0O

* Internal: [O&i]=[C,N;D>1v>2i]-[aD3]:[aD3]-[N,O;!H0!DO]

— Biaryl atropisomers 0
* Input: [aD3]al@-a([aD3])[aD3] V

* Internal: [aD3]:[aD3x2]!@-[aD3x2](:[aD3]):[aD3]

— Cubane B
* Input: C12C3C4C1C5C4C3C25

* Internal: [CZ4Z6Z8x>2]12-@[CZ4Z678x>2]3-@[CZ4Z6Z8x>2]4-@[CZ4Z26Z8x>
@[CZ4Z678x>2]5-@[CZ4Z6Z8x>2]-@4-@([CZAZ6Z8x>2]-@3-@[CZ426Z8X



SUBSTRUCTURE VIDEO

@ Chrome File Edit View History Bookmarks People Tab Window Help OQto =T« = 0%ED Wedlsd2 Q =
e0ce B Arthor X  +
& C & internal.nextmovesoftware.com/arthor/index.html a % © Q0 & @ g

. :. Arthor  Search Manage Datasets Version 3.1

@Ok x] T3dl [2] MINX] g‘{ Found 0 results in 0 ms 3
==l =I=l~alo]aleloldlOlr
<]
]
o]
5
fl
L 1]
B
I
X | JSME Molecular Editor by Peter Ertl and Bruno Bienfait G,

Enter SMILES, Name, Identifier... |

Automatically search on draw or type
— Search Type
Similariy | | SMARTS | Formula

Arthor 3.1

o' Ring systems af Chains @ Properties

~ Datab
£ ChEMBL 25 To start a seagch draw select a search type and database.
£ Zinc [1.4B, Feb 2020] Then draw in the sketcher or enter text in the input box.

£ FEnamine REAL [337M, 2017]
£ Enamine REAL [720M, 2018]
£ Enamine REAL [1.2B, 2019]
£ ChemSpace Building Blocks
2 eMolecules [2019-01-01]

£ eMolecules [2020-01-01]

£ Pistachio [7.3M]

©@2018-2020 NextMove Software Ltd. All Rights Reserved.

https://www.youtube.com/watch?v=NmmES_mNFOw
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THE PROBLEM WITH TAUTOMERS

 Tautomerism causes problems for SMARTS matching.

@) O o]
OH O 0
HN ‘ HN \N
B " —
O OH OH

quinone_C filter CID 5409668
NH, NH, NH,
N N N
e - o - AN \
WNHE _— j/ngHz —_— | \[/ngHz
o} OH o
het_65_G filter CID 4060544
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AND WITH RESONANCE FORMS

e As do resonance forms (and nitro representation &.)
D Q\m/@ Q\N@
HN\N/\\H N>/N N>rN
CID 720071 CID 720071
(Oct 2018) (Feb 2019)

het_5_inium filter

NIH Virtual Workshop on Ultra-Large Chemistry Databases, Thursday 3@ December 2020



GUANINE TAUTOMERS RESULTS

* Without post-processing, the raw results look like:

0
101930028
N| =N CsHNgO
- ,> 161.101
thl\\‘N)\N/ N
0

H 135398634
1 HN N CsHsN50
/k\ | /> 151126
H,N N N
0
140355140
HN =N CsH3N50
N)\ P /> 149 110
H N N

0
504258
3 M .——"N> C5H3N50
Jl\ P N/ 149110
H,N N
(0]
H 135537618
4 HN ‘ > CsH3N50
)\\ N/ 150.104

H.°N N
l?o
H 136689991
5 HN | N> CsHsN50
152126
)% N/
H.N N
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54

55

56

57

58

H 102341194
NZ N CsHsNgO
)\\\ />_ NH; 165.133
H,N N N
o)
H 135420630
HIN CsHsN5O5
/L\\ ‘ \FO 167 125
HNT N N
0
135498233
HMN ,.—'N C5H3N502
o >:0 165.109
H,N N N
HO
y 141357953
NZ N CsHsN502

167.125



GUANINE TAUTOMERS SMARTS

Bes

Carbons are constrained to be sp2, heteroatoms to standard valences.
(Non-triple) bonds become single, double or aromatic.
[#7]1-,=,:[#6]-,=,:[#7]-,=,:[#6]2-,=.:.[#6]-,=,:1-,=,:[#7]-,=,:[#6](-,=,:[#7]) -
=, [#7]-,=,:[#6] -,=,:2-,=,:[#8]

Carbons: [#6X3v4i+0,#6X3v3-1,#6X3v3+1]

Nitrogens: [#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1]
Oxygens: [#8X1v2+0,#8X1v1-1,#8X2v2+0,#8X2v3+1,#8X3v3+1]




GUANINE TAUTOMERS SMARTS

Bes

[#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1]1-,=,: [#6X3Vv4i+0]-,=,:
[#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1] -,=,: [#6X3Vv4i+0]2-
,=,:[#6X3v4i+0]-,=,:1-,=,: [#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1]-,=,:
[#6X3Vv4i+0](-,=,: [#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1]) -,=,:
[#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1]-,=,: [#6X3Vv4i+0] -,=,:2-,=,:
[#8X1v2+0,#8X1v1-1,#8X2v2+0,#8X2v3+1,#8X3v3+1]




NETQ & TOTX: CONSERVATION OF X

 |dentifying/filtering relevant tautomers
int netg = 0;

unsigned int totx = 0;

for (unsigned int idx : match) {
Atom *atm = mol->getAtomWithIdx (idx) ;
netqg += atm->getFormalCharge() ;
totx += atm->getTotalDegree () ;

}

// Gaunine tautomers have totx of 29, and 0 netq.

return totx+netqg >= 29;

* Under reasonable valence constraints X(Xi + gi) is a
conserved quantity of substituted tautomers/protomers.



BANDWIDTH IN EP SIMILARITY

 Bandwidth limitations also apply computing
similarity using Tanimoto of binary fingerprints.

* Fingerprints can be stored without storing the
popcount of each fingerprint explicitly.

* The biggest (tuneable) trade-off is the length of each
fingerprint.




INFLUENCE OF ECFPY FINGERPRINT LEN

100 -
90 -
a0-
T0-
= 60-

m 20-
w

18]
a 40- Activity Class
30- — 5HT3
— ACE
20- | — HMC_COA
10-
TXAZ

0 256 512 763 1024 1280 1536 1792 2043 2304 2560 2816 3072 3328 3534 3840 4096
Fingeprint Size (bits)

* For ultra-large databases 256 bits are sufficient, for,
regular (ChREMBL/PubChem) 1024 is reasonable.
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ECFPY FINGERPRINTS IN CONTEXT

90.00%
85.00%
80.67%
80.00% 79.38%
. (o]
75.96% 75.60% @ SmallWorld
75.00% DECFP_4
OFCFP_8
70.00% ELINGO
66.17% 65.23% >
65.00% ' 64.00% @ MACCS
® ChemAxon
60.00% M Daylight
55.00%
50.00% T T T T T T
SmallWorld ECFP_4 FCFP_8 LINGOs MACCS ChemAxon Daylight

 ECFP4 fingerprints (even at 256 bits) outperform t
path-based fingerprints in prev-gen search engi
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THE IMPACT OF FINGERPRINT CHOICE

A side-effect of progress is that ECFP4 has a
significantly lower bit density than path-based FPs.

One observable is that Tanimoto values above 0.345
are now biologically significant where path-based
fingerprints (traditionally) have a 0.7 threshold.

Less obvious is that Baldi-bounds based
optimizations are less effective.

Fortunately, simpler multi-threading and other
benefits more than make up for bounds pruning.

Search that looks at over 50% of a database is



BREAKING THE SPEED BARRIER

* The application of Just-In-Time (JIT) compilation, the
process of turning similarity queries into executable
machine code enables a significant bandwidth
breakthrough.

* Not every word of a fingerprint is necessary for
calculating a Tanimoto, by reading only relevant
words memory bandwidth is used more effectively.




JIT CODE GENERATION EXAMPLE

oo

+

0: 4000400000101110
a0y + _ popcll ((target[1] & 0x0002000000082000) +
3: 0010001010046000 (target[6] & 0x1000000810000940) +
4: 0000000000001000
5: 9000002001000080 (target[8] & 0x0000100400000008) +
Loy (target[9] & 0x0040804000040400))
8: 0000100400000008 + _popcll ((target[7] & 0x0000000004800900) +
9: 0040804000040400 —
10: 0000000010000000 (target[11]& 0x0020000000240020) +
L o (target[12]s 0x0000000050020000) +
13: 0000800400080002
13: 0000800400080002 (target[14]s& 0x0000000001002004))

+ ((target[2]>>24)&1)

)

((target[4]>>12) &1
((target[10]1>>28)&1);

+
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ARTHOR ATEP JIT BACKENDS

 NVidia PTX Assembly Language

ld.global.u64 srd27, [%rdl0+56];

and.b64 %$rd28, %rd27, 4947953319952;
popc.b64 %rl9, %rd28;

add.s32 %r20, %rl8, %rl9;
l1d.global.u32 %$r2l, [%rdl0+68];

shr.u32 $r22, %r2l, 3;

and.b32 %r23, %r22, 1;

add.s32 %r24, %r20, %r23;

e ARM v6 Assembly Language

ldrd rO/ [fp]

1sl r0, r0, #11

lsr r7, r0, #31

1sl r0, r0, #8

add r7, r7, r0, lsr #31
1sl r0, r0, #4

add r7, r7, r0, lsr #31
1sl rl, rl, #1

add r7, r7, rl, lsr #31
1sl rl, rl, #16

add r7, r7, rl, lsr #31

NIH Virtual Workshop on Ultra-Large Chemistry Databases, Thursday 3@ December 2020



TWO PASS COUNTING SCRT

Analysis of prev-gen FP search systems revealed that
typically sorting, not searching, is the bottleneck.

The search phase is O(N), but sorting the results is
typically O(N.logN) for non-trivial numbers of hits.

Arthor uses an efficient O(N) two-pass counting sort.

— Search Type

| Substructure ‘ SMARTS | Formula

t 0.345
> 875520/

— Databases

e




COMPARISON TO PREVIOUS WORK

550
N B Arth
o00 § N CLer?\rFP
450 § Bl MadFast -
Q \ I OEGraphSim
$ 400 § B cfficientBits |
g 350 § B OB FastSearch|-
B‘Oj 300 . § GTX-1070
= 250 § § GTX-745 i
= 200 % §
N X
150 ’ § ; §
1 5
i 1
O g Wi

L

L—CPU— LGPU- L—CPU— L-GPU L—CPU— LGPU-
ChEMBL 22 eMolecules 2017-04-01 PubChem Compound

Split bars indicate single thread vs. 16 threads for CPU.
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SIMILARITY VIDEO

@& Chrome File Edit View History Bookmarks People Tab Window Help Qte T« 100% B3 Wed15:43 Q =
®0® g Athor x ek
& > C @ internal.nextmovesoftware.com/arthor/index.htm! Q % © 0 0O & O g

& ~_‘ Arthor ~ Search Manage Datasets

¥ X _!I Matched 10 results in 60 ms <
O @IO %IO FG

[linew| X >R
c| MmN ZINC000001851149
] 1 NN " il C23H27CIoN30,
N N J /J ]
—_— B e v Sy 448.384
Fo) Cl
s Cl )
= L ZINC000095669780
R N/\ P s 2 Ca3Hz7CIoN303
Lol K/N 464.383
L
LBr] 0 N Y0
1
7Sl ZINC000027722180
2. O. 482.829
abilify |
Automatically search on draw or type ZINC000027731699
~— Search Type 4 CZ3H26C|3N302
Substructure ‘ SMARTS | Formula 482829
B . ZINC000115098832
5 T T B0 C24H29CI2N303
beiion siie. it - ik coa. A
478.410
— Databases o
S ChEMBL 25
[ Zinc[1.48, 0] ) M ZINC000100222367
- - e g | N
€ Enamine REAL [337M, 2017] 6 e I Co7H34CI3N302
[ 538.935
£ Enamine REAL [720M, 2018]
£ Enamine REAL [1.2B, 2019]
£ ChemSpace Building Blocks ) [ | ZINC000095564798
e C3gH3gCloN30,
€ eMolecules [2019-01-01] 4 5 30H39C12N304
o 576.553

©2018-2020 NextMove Software Ltd. All Rights Reserved. Page Request Time = 61 ms (5]

https://www.youtube.com/watch?v=NmmES_mNFOw
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ROUND-TARLE: F

EDERAT]

=D SEARCH

Movie quote: “First rule in government spending: why build one when you
can have two at twice the price?” - S.R. Hadden, Contact (1997).

Round-table allows Arthor databases to be
distributed and split across multiple hosts (on a cloud
or local area network) and virtualized as a single DB.

Round Table Server

ubChem
Compound

Server 1

Round table eliminates Arthor’s 4B row limit.

Round Table Server

—— ——

—_— _—

Z- -—
Server 2 Server 3

L

Server 4



THE BIGGER PICTURE

e Search is just one aspect of ultra-large chemical
database management.
— Data loading/indexing/fingerprinting is a critical step.
— Graph canonicalization for deduplication/hashing.
— molhash for lookup, tautomer, formula, scaffold search.
— Join performance with external databases rate limiting.
— Calculation of MW, LogP, Rotb, HBA, HBD, Ro5, PAINS.
— Pre-sorting SMILES (by HAC/MW) probably bottleneck.
— Clustering and Diversity selection*

* https://github.com/rdkit/UGM_2019/blob/master/Presentations/Sayle_Clustering.pdf



| FEEL THE NEED, THE NEED FOR SPEED

 An important ingredient is canonical SMILES.

— RDKit 2019 6.82 Kmol/s
— InChl (Open Babel) 7.32 Kmol/s
— Open Babel 10.3 Kmol/s

— Openkye OEChem 50 Kmol/s
— NextMove Software 113 Kmol/s

* PAINS filtering.
— Arthor takes 32s to check PubChem’s 100M compounds.

Schneider, Sayle and Landrum, “Get Your Atoms in Order-An Open-Source Implementation of a Novel a
Robust Molecular Canonicalization Algorithm”, J. Chem. Inf. Model. 55(10):2111-2120, 2015.



INFINITE PEPTIDE SIMILARITY SEARCH

* Blastp results (BLOSUM®62) to 14AA sequence Mastoparan-L

Query:

Hit
Hit
Hit
Hit
Hit
Hit
Hit
Hit
Hit
Hit
Hit
Hit
Hit
Hit

NIH Virtual Workshop on Ultra-Large Chemistry Databases, Thursday 3@ December 2020

0O J o O b w ND R

e

10:
11:
12:
13:
:MNLKALAALAKKIL

14

INLKALAALAKKIL
VNLKALAALAKKIL
INLKALAALAKKVL
VNLKALAALAKKVL
LNLKALAALAKKIL
INLKALAALAKKLL
INIKALAALAKKIL
INMKALAALAKKIL
INLKAIAALAKKIL
INLKAMAALAKKIL
INLKALAAIAKKIL
INLKALAAMAKKIL
INLKALAALAKKIT
INLKALAALAKKIM

Dist=0
Dist=1
Dist=1
Dist=2
Dist=2
Dist=2
Dist=2
Dist=2
Dist=2
Dist=2
Dist=2
Dist=2
Dist=2
Dist=2
Dist=3




RETROSYNTH BUILDING BLOCK SEARCH

ﬁl J@’ Q/ @“@
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FIGHTING BIG DATA WITH BIGGER DATA

Observe that with pre-indexing (sorting), lookup &
duplicate removal go from O(N) to O(log N).

Similarly, tautomer, Bemis-Murko scaffold and
matched pair search can be sped up by pre-indexing.

SmallWorld pre-indexes subgraphs to simplify
Maximum Common Substructure from NP to ~O(1).

Graph-edit distance searches (of any size database)
now only requires ~10Mbytes of bandwidth.

The catch: the spatial data structure requires >40
The good news is this is only computed once.



EXAMPLE EDIT OPERATIONS

Sildenafil (Viagra) Vardenafil (Levitra)
, M
m “N t i i:ll H"H
Sumatriptan (Imitrex) Zolmitriptan (Zomig)

o

0 0

Y
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EDIT DISTANCE

* Edit Distance is a measure of similarity (dissimilarity) between
two discrete mathematical objects (formally a metric space).
— String Edit Distance is a similarity metric between strings.
— Tree Edit Distance is a similarity metric between trees.
— Graph Edit Distance (GED) is a similarity metric between graphs.

 GED is the minimum number (or cost) of edit operations
required to transform one graph into another.

* Edit operations consist of insertions, deletions and
substitutions of nodes and edges (atoms and bonds).

* Traditionally, computing GED is believed to be NP-Hard.

Alberto Sanfeliu and K.S. Fu, “A Distance Measure between Attributed Relational Graphs for Pattern
Recognition”, IEEE Transactions of Systems, Man and Cybernetics (SMC), Vol. 13, No. 3, pp. 353-362

https://en.wikipedia.org/wiki/Graph edit distance



https://en.wikipedia.org/wiki/Graph_edit_distance

A MAP OF CHEMICAL (GRAPH) SPACE

* The data structure underlying SmallWorld is a graph of graphs.
» Each vertex represents a molecule (with less than 99 bonds).
* Each edge represents an insertion or deletion edit operation.

- o
B B () o o

AL Y e I

A/\/\ \)\
A o~ L

PN

e Currently contains 380 billion vertices and 2.8 trillio



SMALLWORLD SEARCH

SmallWorld lattice: Circles represent virtual subgraphs,
bold circles denote molecules mapped to subgraphs.
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SMALLWORLD SEARCH

[ Dist | WF | New | Hits.
0 1 1 1

The solid circle denotes a query structure which may be
either an mapped molecule or a virtual subgraph.
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SMALLWORLD SEARCH

The first iteration of the search adds the neighbours of the
query to the “search wavefront”.
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SMALLWORLD SEARCH

e

Each subsequent iteration propagates the wavefront by
considering the unvisited neighbours of the wavefront.
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SMALLWORLD SEARCH

At each iteration, “hits” are reported as the set of mapped
molecules that are members of the wavefront.

NIH Virtual Workshop on Ultra-Large Chemistry Databases, Thursday 3@ December 2020



SMALLWORLD SEARCH

e & ——

o\

The search terminates once sufficient mapped neighbours
have been found (or a suitable iteration limit is reached

NIH Virtual Workshop on Ultra-Large Chemistry Databases, Thursday 3@ December 2020



SMALLWORLD SEARCH




SMALLWORLD SEARCH

KT —

The use of breadth-first (or best-first) search is similar to th

Graph500 benchmark of supercomputers, measured in

https://graph500.org/
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TOPOLOGICAL EDIT/EDGE TYPES

tdn
x tup
tup

tu
+ px tdn

tdn rup rdn
tup

lup =» lup =»
<ldn <ldn

ra‘p iy
tup =» tup =»
\r\/\ <tdn NN <tdn
i
tu+p tin lup Elin
:
NN

tup:
tdn:
rup:
rdn:

:insert a (degree 2) linker

: remove a (degree 2) li
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add a terminal bond
remove a terminal bond
form a ring bond

break a ring bond



SMALLWNORL

SMALLWCRLD Chemical Edit Distance Search

Results

Compound ¢ ¥ Color) Distance 4 ToPological 4 peppy 4 Unlabelied

¥ Distance MCES e

CHEMBL3408750 .
MW: 198.26 0
MF: CyzH14N2

CHEMBL3408762
MW: 212.29
MF: Ci4HigN>

CHEMBL3408746
MW: 212,25
MF: Cy3H1aN20

Structure pasted

SMILES c]cnclccc(NlCCCCl)chc}[
CHEMBL3407513
o MW: 196.25

Search Type [ SmallWorld Advanced MF: C13H12N2

o Bt ose
= MF: CyzH14N2
=3

Distance
Terminal
Ring

Linker
Mutation
Substitution
Hybridisation

Atom Type
Match

-
CHEMBL3408753
MW: 216.28
MF: Cy3HigN2O

o 00000 Oo

<]

CHEMBL69263
MW: 22825
MF: Cy3H12N20,

CHEMBL209870
MW: 197.24
MF: CyoHy Ny

[Showing 1 to 8 of 5,616 entries

Hydrogen Substitution | Hybridisation Change § Minor Transmutation Major Transmutation

Searching... (5.6 s Elapsed) '

https://www.youtube.com/watch?v=hZ4QyQSeSWg




[ SmallWorld Search ¥ W Aspirin - Wikipedia, the fre
€ - C' | [ smallworld/html/livesearch.html w2 00O & =

I+ SMALLWORLD Chemical Edit Distance Search

Results
= o
O] : Compound { ¥ Color)
- ==~ ] @ |FG
— CHEMBL1697753
C MW: 180.16 Q 1.00
o MF: CgHgO4
N
]
i )]\ CHEMBL2296002
MW: 180.16 Q 1.00
F o = MF: CgHgOy4
Cl
Br 0 OH
o CHEMBL25
L MW: 180.16 0 1.00
MF: CgHgOy4
X O
SMILES cc(=0)0clecccelC(=0)0 CHEMBL499817
% MW: 258.05 1 0.56
DataSet [ CHEMBL 20 _ $] MF: Cotl/BrO,
Search Type [ SmallWorld #] Advanced
howing 1to 5 of 6,146 entries
Hydrogen Hybridisation Minor Major Deletion
Substitution Change Transmutation §Transmutation

Searching... (2.4 s Elapsed) o'

va Software Ltd. All Rights Reserved.
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[ SmallWorld Search %W Aspirin - Wikipedia, the fre >

€& — C [ smallworld/html/livesearch.html w| € ﬂ @ &5

Results

Compound ( ¥ Color)

|FG "N*?’""'
CHEMBL282239

HO MW: 185.22 o 0.09
MF: CgHigNz02

0
8

e lel-lele]z]e] s
>:D
o
/
Z

Ol
@) &)
Ol

O
9] B
©Q

CHEMBL21120
MW: 185.22 0 0.09
= T N NMy MF:CcgHisN30;

0 OH
NH
CHEMBL28M128
MW: 185.22 ] 0.09
H NH,  MF: CgHigNz02

SMILES cc(=0)}0clecceelC(=0)0 J\m CHEMBL280511
DataSet [ CHEMBL 20 3) MW: 186.21 0 013

MF: CgHij4N2O
Search Type [SmallWorld #] | Advanced 8MaT2Es

¢

howing 1to 5 of 31,099 entries

Hydrogen Hybridisation Minor Major Deletion
Substitution Change Transmutation §Transmutation

Finishad (Timeout)

Rights Reserved.



PREVIOUS DATARBASE STATISTICS

As of March 2020, the SmallWorld index has
380,162,460,266 nodes (~380B or ~23% nodes)
2,756,346,958,754 edges (~2.8T or ~2%4% edges)
— 1,472,058,112,318 ring edges.

— 752,057,044,898 terminal edges

— 532,231,801,538 linker edges.

Average degree (fan-out) of node: ~14
Runtime index requires 40TB of disk space.




GRAPH DATARASE FABRICATION

The compressed “raw” source representation of
SmallWorld is 14TB gzipped; one ASCII line (of two
SMILES) for each edge, i.e. 2.8 trillion text lines.

Hypothetically, these 2.8T triples could be loaded
into a database such as Oracle, Virtuoso or Neo4,.

Instead, we “compile” this graph database down to a
40TB form that is efficiently searched at run-time.

This 40TB can be gzipped to 20TB for delivery to
customers on two £200 external USB disks (like a
subscription service).




CHALLENGES FOR 21T CENTURY

In SmallWorld, latency not bandwidth (nor compute)
becomes the limiting factor.

Evaluating a proof-of-concept SmallWorld deployment at a pharma
company in Boston, on a shared server using standard local network
storage, a benchmark searching for the 100 nearest neighbors of 18 drug
like molecules against Enamine REAL 2019 (1.3B) took 9 minutes from a
cold start. They were impressed with ~30s per search. Re-running the
benchmark immediately (a warm start executing exactly the same number
of instructions) completed in 11s, around a half second per mol.

The difference in the times is due to storage latency and OS file caching.
SmallWorld only requires 10MB of bandwidth, but randomly within ~41
The company’s full deployment uses a 2TB server with attached SSDs




SUMMARY

e Algorithmic improvements and Moore’s law
advances in hardware should allow traditional
cheminformatics and bioinformatics search
techniques to be applied for the time being,
but ultimately next generation approaches will
be required to handle multi-billion compound
databases.

* First master computation, then bandwidth, then latenc



EXECUTIVE SUMMARY

SmallWorld HDD %

SmallWorld SSD $%

SmallWorld NVME $%%

SmallWorld RAM $5%%

Search Time
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Database Size




THE END OF THE WORLD IS NIGH¢

* From Matthias Rarey’s talk yesterday:

Ji!‘ s foes CiromaTce
Concluding Remarks on Chemical Space Search
10- 1000 The Query
9 e, @ M
g /\N/% 4\ S g' S
Q. e Sl ‘
m H’N/g=o ‘.’ -r
in- H Top. MCS Red- Shape Pharma- Docking
-s 1m'0 100m 10 Simil. Graphs cophore
= N BN BN | B[
') o 101000
Q 2
m 1010 1060 % 1mio-100mio | | | I | I | I | I
g E & /
- ! 1010-10% B U B

N_

« 10%9-10'2 is manageable on current hardware.
* |t needs to be, 10°° uses 103° building blocks in a t

component (proximal) library, or 6x10%0 in 5 ste
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